Estimates of global biomass burning emissions for reactive greenhouse gases ( CO , NMHCs , and NO x ) and CO 2
نویسندگان
چکیده
[1] Open fire biomass burning and domestic biofuel burning (e.g., cooking, heating, and charcoal making) algorithms have been incorporated into a terrestrial ecosystem model to estimate CO2 and key reactive GHGs (CO, NOx, and NMHCs) emissions for the year 2000. The emissions are calculated over the globe at a 0.5 0.5 spatial resolution using tree density imagery, and two separate sets of data each for global area burned and land clearing for croplands, along with biofuel consumption rate data. The estimated global and annual total dry matter (DM) burned due to open fire biomass burning ranges between 5221 and 7346 Tg DM/yr, whereas the resultant emissions ranges are 6564– 9093 Tg CO2/yr, 438–568 Tg CO/yr, 11–16 TgNOx/yr (as NO), and 29–40 TgNMHCs/yr. The results indicate that land use changes for cropland is one of the major sources of biomass burning, which amounts to 25–27% (CO2), 25 –28% (CO), 20–23% (NO), and 28–30% (NMHCs) of the total open fire biomass burning emissions of these gases. Estimated DM burned associated with domestic biofuel burning is 3,114 Tg DM/yr, and resultant emissions are 4825 Tg CO2/yr, 243 Tg CO/yr, 3 Tg NOx/yr, and 23 Tg NMHCs/yr. Total emissions from biomass burning are highest in tropical regions (Asia, America, and Africa), where we identify important contributions from primary forest cutting for croplands and domestic biofuel burning.
منابع مشابه
Experimental Studies of CO2 Capturing from the Flue Gases
CO2 emissions from combustion flue gases have turned into a major factor in global warming. Post-combustion carbon capture (PCC) from industrial utility flue gases by reactive absorption can substantially reduce the emissions of the greenhouse gas CO2. To test a new solvent (AIT600) for this purpose, a small pilot plant was used. This paper presents the results of studies ...
متن کاملEstimation of the Carbon Footprint in Dairy Sheep Farm
By 2050, the earth’s population is expected to be more than 9 billion. The need for secure food and water supply will force agriculture to increase production. The major greenhouse gases (GHGs) from the livestock sector are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) throughout the production process. These gases are the key contributor to an in...
متن کاملGlobal Near-Real-Time Estimates of Biomass Burning Emissions using Satellite Active Fire Detections
We present a new technique for generating daily global estimates of biomass burning emissions suitable for use in models forecasting atmospheric chemical composition and air quality. We combine ecosystem-dependent carbon fuel databases, fire weather severity estimates, and near-real-time satellite fire detections from the MODIS instruments to estimate the amount of carbon released from active f...
متن کاملNear-Real Time Global Biomass Burning Emissions Product from Multiple Geostationary Satellites
Near-real time estimates of biomass burning emissions are important for air quality monitoring and forecasting. We present here the preliminary analysis of global biomass burning emission product (GBBEP) produced from geostationary-satellite-derived fire radiative power (FRP) in near-real time. Specifically, the FRP is retrieved at an interval of 15 to 30 minutes using WF_ABBA_V65 (Wildfire Aut...
متن کاملBiomass Burning and the Production of Greenhouse Gases
Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along with methane, lead to the chemical production of tropospheric ozone (another greenhouse gas) as well as control the concentration of the hydroxyl ...
متن کامل